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Summary

This work reports on the distance dependence of high frequency ground motion in the
1-16 Hz range and compares the New Madrid Seismic Zone, the Southern Great Basin,
southern California and most recently Utah to other locations in the western U. S. The
study during this grant used data collected by the University of Utah Seismograph Station
system and focused on high frequency ground within Utah associated with the essentially
north-south line of seismicity through the central part of the state.

The purpose of this ongoing study is to quantify the regional variation in high frequency
earthquake ground motion in regions monitored by regional seismic networks.

The study provides the basic research required to refine current regional ground motion
models used in national seismic hazard studies.

I ntroduction

This research is part of a long-term effort to use regional seismic network data to con-
strain high frequency ground motions. The driving motivation is the urgency to provide
state-of-the-art ground motion scaling for probabilistic seismic hazard analysis and engi-
neering design. The situation facing most of the United States is the low rate of earth-
quake activity so that neither local earthquake nor strong motion recordings exist in suffi-
cient numbers to define needed ground motion scaling relations. In a few regions, which
have been or are monitored by regional seismic networks, digital recordings of small
earthquakes may exist but there may be no strong motion recordings. Strong motion data
exist in sufficient number for development of predictive relations in a few locations of the
western United States. The lack of an empirical data base of expected strong ground
motions applicable to the entire United States, requires the judicious use existing world-
wide data (Spudich et al., 1999) to extrapolate to larger events or to different regions.
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Fortunately there is an abundance of vertical component waveforms for small earth-
quakes in some parts of the United States, so that their study may provide some con-
straints on the regional extrapolation. The effort behind this comparative study is to
extend a methodology developed for New Madrid, Missouri to other regions of the
United States. To date, we have applied the methodology to the following regions:

Region Seismic Network
New Madrid Cooperative New Madrid Seismic Network Data
PANDA
Southern Great Basin USGS/DOE
Wasatch Front University of Utah Seismograph Stations
Washington and Oregon  Pacific Northwest Seismic Network
Germany German Regional Seismic Network
Italy Portable deployments, MEDNET
Central Mexico RSVM, UNAM

Some of the results of these studies are given in the following publications:

Jeon, Y. S. (2000). High Frequency Earthquake Ground Motion Scaling in Utah, M. S
(Research) Thesis Saint Louis University, St. Louis, MO 124 pp.
http://www.eas.slu.edu/Theses/sooymsr.pdf

Malagnini, L., R. B. Herrmann, and K. Koch (2000). Ground motion scaling in Germany,
Bull. Seism. Soc. Am. 90, 1052-1061.

Malagnini, L., R. B. Herrmann and M. Di Bona (2000). Ground motion scaling in the
Apennines (Italy), Bull. Seism. Soc. Am. 90, 1062-1081.

Malagnini, L., and R. B. Herrmann (2000). Ground motion scaling in the region of the
1997 Umbria-Marche earthquake (ltaly), Bull. Seism. Soc. Am. 90, 1041-1051.

Ortega, R. (2000). High Frequency Ground Motion in Central Mexico: Site, Excitation
and Attenuation, Ph. D. Dissertation, Saint Louis University, . Louis, Missouri.

Raoof, M., R. B. Herrmann and L. Malagnini (2000). Attenuation and Excitation of
Three-Component Ground Motion in Southern California Bull. Seism. Soc. Am. 89
888-902.

M ethodology

The analysis of a data set requires data preparation, regression and forward modeling.
The following sections discuss these steps.

Data Preparation

Digital waveforms are acquired from the network. Each event may have 100 or more
associated traces. Each trace is previewed to remove clipped or otherwise bad waveforms.
The P- and S-times are picked, and the trace is corrected for instrument response to form
a velocity time history in units of m/sec.

The traces are next bandpass filtered at a center frequency f. by passing them through
an 8-pole Butterworth high-pass filter with corner f./v2 followed by an 8-pole low-pass
filter with corner V2 f; the peak filter gain is adjusted to be 1.0. Several filtered trace
characteristics are tabulated:

» peak filtered velocity (nVsec) following the S arrival,
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* the signal duration, defined as the interval within which the integral of filtered velocity
squared following the S arrival changes from 5% to 75% of the maximum,

» the RMS Fourier velocity spectra (m) of the waveform within the duration window
between frequencies f./v2 and v2f.,

* the signal energy in consecutive time windows following S, for use in a Hoshiba sepa-
ration of scattering and intrinsic Q,

 application of random vibration theory (RVT) to the spectra of the signal within the
duration window to estimate peak motion and 5% nd 95% bounds on the estimated
peak motion,

* RMS signal level as a function of time for coda-Q analysis and signal-to-noise estima-
tion.

e event and station identification

The purpose of the extensive tabulation is to preserve enough information to character-
ize the signal for later analysis. The use of such narrow band filters rather than the tradi-
tional damped single degree of freedom response spectrum requires comment. Although a
5% damped oscillator appears to be a sharp filter, it is not. Its output waveform depends
upon the signal input duration and frequency content. A high frequency signal, compared
to the filter frequency, sees only the flat part of the transfer function, and hence will have
an output frequency content much higher than the filter frequency. The narrow band
combination of Butterworth filters used here will yield a filtered waveform with fre-
quency content close to the center frequency of the filter. Thus we are better able to char-
acterize the propagation of one frequency component of the ground motion. To get
around an exact definition of the frequency content of the filtered waveform, we will sub-
sequently define a forward model that is constrained by synthetic motions passed through
the same filters.

The other difficulty with the use of lightly damped oscillators as filters is that the scal-
ing from small earthquake observations to large earthquake motions is non-linear because
of the interplay of signal duration, signal frequency content and the oscillator in estimat-
ing peak-motions. This is less of a problem with the use of the narrow bandpass filters.

It is now obvious that the task is to characterize wave propagation by analyzing small
earthquake motions so that we can use use RVT to estimate peak motions for large earth-
quakes and for the lightly damped oscillators used to define response spectra. To do this,
only the Fourier spectra and the duration of the motion are required. These are the mea-
surements that form the basis of the Atkinson and Boore (1995) model for eastern North
America are the Fourier spectra and duration. We analyze and model both the Fourier
velocity and the peak filtered velocity values instead. Our reason for this extra effort is
that this recognizes the imperfections of both the data and the modeling process. The
observed Fourier velocity spectra requires a determination of the duration, which we have
found shows a lot of scatter; the observed filtered peak velocity values have no such
uncertainty. RVT modeling of the peak filtered velocities, though, requires the duration
value. Our forward model must thus agree with three sets of observations, Fourier spec-
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tra, peak motion and duration, in the context of RVT modeling.
Observed Motions

Observed ground motion is a function of source, site and path. Unless non-linear
ground motions occur at the site, these three factors are theoretically separable, and addi-
tive in a logarithmic sense. Thus the observed logarithm of ground motion, A(r, f), can
be written as

Aj(r, 1) =Ej(rrer, )+ S(F) + D(r s, ), (1)

where r is the hypocentral distance, f is the observed frequency, j is the source index,
1< )<, kisthesite index, 1 < k< K, r & Is a reference distance, and E, Sand D are
the excitation, site and distance functions.

The term excitation is used since the regression only defines the scaling of observed
ground motions and nothing about the seismic source. Other studies, such as Atkinson
and Silva (1997), define a Fourier acceleration spectrum at a reference distance of 1 km.
To emphasize that we wish to stably characterize observations, we specifically note the
use of a reference distance by the term r,4. The reference distance r,« IS selected to be
within the range of observed distances so that we interpolate within the data set rather
than extrapolate beyond, to be far enough from the source that errors in source depth do
not significantly affect hypocentral distance, and yet not so far that expected super-criti-
cally reflected crustal arrivals complicate the motion. For these reasons we use a refer-
ence distance of r & =40 km for our studies.

It is hoped that simple wave propagation models will suffice to predict the A (f,r ).
Of course, there must be observations on both sides of this reference distance to avoid
extrapolation of poor data sets.

The function D(r) in (1) is approximated by piecewise linear segments with a condi-
tion of continuity. This interpolation function is often discussed in finite element texts
(Huebner, 1974) and was used for ground motion scaling by Anderson and Lei (1994),
Savage and Anderson (1995) and Harmsen (1997). Using this interpolation function, the
D(r) is described in terms of the values at L nodes as

D(r):g DN ().

The linear interpolation function, the N(r) is non-zero in the range r, <r <r,,; and
D(r)) = D, by definition. The choice of the nodes is made by examining the distribution
of data with distance. Nodes are spaced to enclose a sufficient number of observations
for a stable, smooth inversion.

By construction (1) is linear minimization problem in J + K + L unknowns. However,
it is singular unless constrained. The constraints used here are

a) D(r,«) =0, where r, 4 =40 km,

b) > S(f)=0, and
k

c) D(r) is smooth.
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Constraints are added to the system of linear equations by adding additional rows in the
linear algebra problem; these rows are heavily weighted. Anderson and Lei (1994) and
Harmsen (1997) use a linearity constraint on D(r) by requiring the numerical second
derivative estimate to be zero. This is important if it is necessary to pass an acceptable
distance function through a gap in distances. We apply the condition

D1 —2D; + Dy4y = 0.

Strictly speaking, this condition is only a linearity constraint if the r, are evenly spaced.
We use an unequal spacing to ensure a sufficient number of observations to define the
distance function within a given data range and to permit greater sampling in regions of
expected rapid change distance function. This condition is thus a linearity constraint in a
mapped distance space for unevenly spaced data.

The site constraint b) is one of many possible. One could force hard rock sites to have
a site term of zero. The site effect used here focuses on relative site effects, and has the
consequence that common site effects are then mapped into the E;(r ) term, which is
another reason that we refer to this symbol as an excitation of observed data rather than
as a source term. The E;(r.) is now seen to represent a mean ground motion level at a
distance of r,& from the source. When three component data are available, this is con-
straint can be modified to apply to only the vertical or to the horizontal components only,
with the other component for a station floating freely.

Other aspects of this model that must be understood before accepting the results of an
inversion are related to tradeoffs between the excitation, site and distance terms. Two
extreme examples illustrate the problems. If one event dominates a distance range, then
there will be a tradeoff between the excitation for that event and the adjacent distance
terms. This occurs if an event is separated by a distance of the network dimensions from a
neighboring event and if the distribution of distance nodes is too dense. In another
extreme example, if only one station appears at a narrow range of distances and if it has
an anomalous response, then the D(r) will be distorted by this station and a bias intro-
duced in all other site terms because of constraint b).

In practice plotting the observation distances by event and by station is a good diag-
nostic for discarding events or for defining the distance nodes. The goal is that each sta-
tion observe events over a wide range of distances overlapping those of other stations,
and that the distance ranges of events overlap.

The regression is applied to each processed frequency to yield the E;(r ., ), Sc(f)
and D(rj, f). The next step is to interpret these observations in terms of a predictive
model.

Theoretical Fourier Velocity Spectra
An expression for the predicted Fourier velocity spectra for a frequency f and a dis-
tancer is
a(r, ) = s(f, My)g(r)e™ "X (f)e s 2)

where a(r, f) is the Fourier velocity spectra, s(f, M,y) is the source excitation as a func-
tion of moment-magnitude, g(r) is the geometrical spreading function, Q(f) is the fre-
quency dependent quality factor which equals Q,(f/1.0)7, Q, is the quality factor at 1.0
Hz, V(f) is a frequency dependent site amplification, and « controls site dependent



attenuation of high frequency.

A comparison of the regression parameters for the Velocity spectra to the terms of this
formula shows the association:

105 = 5(f, My)g(r,« )& e/ @DA (F)e ‘)
100 = 9NeTRO” “
T g(r g ) e Tal(hE
VI(f wAaLs
105‘ = L (5)

where V(f)e7xf is the network average site effect arising from constraint b).
Time domain modeling

RVT requires the signal duration in addition in addition to the predicted signal spectra
at the site. We have found much scatter in our duration estimates because the observed
signals are superimposed on ground noise and because we use an automatic procedure to
determine it from each trace. The observed duration values are fit using the same linear
interpolator used for distance:

T(r)=§T. N (),

but now the only constraint is that T(r =0km) =0. RVT predictions depend on the sig-
nal duration which is assumed to be

TS+T(r) '

where Tg is the source contribution and T(r) is the distance dependent wave propagation
contribution to total duration. The justification for the r = 0 constraint is that we assume
that the duration of small earthquakes used ]in the study to be small and that the mea-
sured duration is relatively insensitive to event size of the small earthquakes. Predictions
for larger earthquakes will use a sufficiently large Tg that overwhelms the T(Okm) =0
constraint at short distance. We used a L2-norm to determine the T, node values, but
should perhaps use an L1-norm fit used by Malagnini et al (2000).

Modeling
We use the following steps to model the observables of (1).

 Fit the Fourier velocity D(r) in terms of g(r) and Q(f). We assume that the Q(f) is
independent of distance. Even with our typical range of filter frequencies between 1
and 16 Hz, the e ™™ (MA trades off with the g(r) so that we can not uniquely deter-
mine either. We assume that the 1 Hz D(r) is not strongly affected by the Q(f) and use
this as a guide to the choice of g(r). The g(r) is kept as simple as possible, e.g., with
just a few nodes between 1 and 400 km. The spread in the D(r) as a function of fre-
quency at large distance is indicative of the value of 7 - there will be a large spread for
small n and no spread for » = 1. It is not difficult to find an acceptable set of parame-
ters.
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» Test the g(r) and Q(f) choice and refine the T(r) values by fitting the D(r) for the fil-
tered peak velocity. To do this, we assume a small My, e.g., 3.0, for the event size to
predict the s(f, Myy). Even though the source term will not divide out for the normal-
ized D(r) in the way that it did for the Fourier velocity spectra in (5), we assume that
the source effect is effectively removed when looking at narrow bandpass filtered sig-
nals.

The reason for this stage is to check the internal consistency of the g(r), Q(f) and
T(r) to explain both the distance dependence of the Fourier velocity and the peak fil-
tered motions.

» Constrain the V(f)e~f term. Figure 1 shows the Fourier acceleration spectra at a
distance of 1 km for 6 different moment magnitudes and five stress drops, from 10 to
400 bars (following Boore, 1983). We see that the stress drop does not affect the
source spectra in the 1-16 Hz frequency band for the smallest event. Lacking detailed
information about the moment magnitudes of these small events and the mean site spe-
cific V(f), we presently use the parameter x4 in our modeling, where

el =V(f)enT,

This may seem odd mathematically, but since the V(f) monotonically increases from
1.0 at low frequency to a fixed high frequency value, and since we have a limited fre-
quency range to fit a logarithmic function, we assume that this approximation is in
error by only a constant factor at most.

Regional Comparison

In this section we compare the parameterizations for six regions: New Madrid, South-
ern Great Basin, Southern California, Pacific Northwest, Utah eastern North America
(Atkinson and Boore, 1995). The g(r) for and the T(r) are shown in Figures 2 and 3,
respectively. Table 1 shows the values for Q(f). The geometrical spreading functions
were constrained to be r~ for short distances, consistent with current usage in the west-
ern United States (Atkinson and Silva, 1997). Keeping in mind the tradeoff with between
g(r) and Q(f), we see variations on the order of only V2 among the six regions. The
curve for UTAH will be discussed later as one of two possible models. In eastern North
America, the NMD (New Madrid) curve lies above that of AB95. The Q(f) values of
Table 1 show distinct regional variations.

Table 1. Regional Parameters

Code Region Q(f) Kref
AB95  SE Canada 680 %%  0.000
NMD  New Madrid 900f%%°  0.045
SGB Southern Great Basin  230f%°  0.04
PNSN  Pacific Northwest 160f%¢  0.04
UTAH  Wasatch Front 1501%%  0.045

SCAL  Southern California 170 £ 947

Figure 4 shows the modeled D(r) for the Fourier velocity spectra. These smooth
curves to fit the regression results within the error bounds of fit. These results are normal-
ized at a distance of 10 km The color scheme is the same for each inset. (Note the
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Fig. 1. Fourier acceleration spectra scaling My 2, 3, 4, 5, 6 and 7 and stress drop 10 bars (dark) to 400 bars
(light). We use p = 2.8 gm/cm?® and B = 3.5 km/sec, H/V =1 and the Atkinson and Boore (1995) source
spectral model with & = 1 and the corner frequency relation f,6 = f, =4.9 [10° 3(Ac/Mg)*°.

Southern California has frequencies of 1 - 6 Hz because of the 20 Hz digital sampling
rate of the data). The 1.0 Hz values, light gray, show distinct variations. For the same
earthquake source input at 10 km, which will not be true because of regional differences
in source spectrum scaling (Atkinson and Boore, 1998), we see that the New Madrid
region would have the greatest expected motion at 300 km. We also that Utah uniformly
has the lowest motions, especially in the 40 - 100 km distance range.

Figure 4 compares the normalized D(r) for the peak ground velocities among the six
regions. We again see that Utah has the lowest expected motions at all frequencies. We
also not regional differences in the importance of the change in spreading due to the
Moho arrivals.

Application to Large Earthquakes

The parameterization of ground motion can easily be incorporated into a random
vibration theory (Boore, 1996). Several additional pieces of information are required:

 source scaling model, and
* correct site term, which should be compatible with our &,

Figures 3, 4 and 5 indicate significant differences in the way individual frequency compo-
nents of ground motion vary regionally. When considering large earthquakes, some of
these differences may not be as important.
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Fig. 2. Geometrical spreading function normalized at
r =1 km for the six regions. Two models for Utah are presented.

The differences in regional specific duration become less significant for larger earth-
quakes. This is because the peak motion is controlled by the total duration, Tg+T(r),
where Figure 3 presents our best estimate of the propagation duration. Tg for large
earthquakes will be greater than the T(r) at short distances, and thus will have a greater
influence on the predicted peak motion.

Even though the propagation duration is less important for larger earthquakes, the
regional differences in geometrical spreading, g(r) and frequency dependent Q(f) will
continue to be important.

Recent Results and Insights from the Utah Data Set

Jeon (2000) processed 3000 waveforms from the University of Utah Seismograph Sta-
tion archives from 279 events during the first 7 months of 1999. The data set was quite
acceptable and led to some interesting surprises:
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Fig. 3. Duration distance scaling for the six regions

* Rapid decrease of amplitude at short distance
* A corresponding strong tradeoff with the predicted excitation.

To model the observed D(r), two models were constructed, A and B, that differed primar-
ily in the geometrical spreading at short distances:

Model A Model B
Q(f) | 14505 180 f 20
g(r) | r*° 0<r<20 | rt® 0<r <40
ri2 20<r<50 | r0% 40<r <80
r 06 50<r <80 | r 0% 80<r
r 00 80 <r <250
r0s 250 <r
kgt | 0.045 0.045
Ve 400 bars 400 bars

Figure 6 and 7 present the differences between the observed and model predicted peak fil-
tered value D(r) for Models A and B, respectively. The large deviations at high frequen-
cies and r > 200 km are related to the reduced number of observations there. The large
deviation at 125 km may be due to a poor instrument calibration or an artifact of the ini-
tial coda normalization D(r) estimate (we will test the influence of the initial guess in a
scheduled recomputation). However, sufficient observations exist between 20 and 40 km.
Model B does fits the observed D(r) better in this range of distances than does Model A.
So the data require a rapid decrease of vertical component amplitude with distance. We
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Fig. 4. Fourier velocity spectra distance scaling for the six regions, normalized at a hypocentral distance of
10 km

could have fit this using an r ™ trend and a very low Q, < 100, lower than anywhere else
in the U. S.I Model A was constructed to have an r~* at short distances, which is what is
generally used in other studies, e.g., (Atkinson and Boore, 1995). The consequences of
these two propagation models is very apparent when comparing the predicted to observed
excitation E(r,s, ) in Figures 8 and 9, respectively for Models A and B, respectively.
The procedure used was to focus on the small events, and to adjust the x« So that the
small predicted M,, values would parallel the observations. Hence the x4 = 0.045 sec.
Then the stress drop was varied to attempt to match the shapes of the larger events using
both log-log and log-lin plots. A Asignal =400 bars was required since a lower stress
drop would show the effect of corner frequency shift in the 1 - 16 Hz frequency range as
the source sizes varies by the factor of 1000 of our data set.

The difference in the two propagation models is that Model A predicts motions about
0.5 log,, units larger at 40 km than Model B. The University of Utah M 's for the four
largest events in these figures have M| 'sin the range 3.7 - 4.2 . To get a seismic moment,
we compared some seismic moments from Nabelek

http://quakes.oce.orst.edu/moment-tensor/
to University of Utah M| 's and found that My, = M. This Model B seems to do a better
job at predicting absolute levels, in spite of its very rapid geometrical decay at short dis-
tance.

So perhaps earthquake ground motions for Utah will be much lower than for other
regions in the U. S. because of the rapid decrease of amplitude with distance. This has
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major implications on expected ground motion for Utah earthquakes.

Discussion

The rapid decrease of high frequency ground motion in Utah decreases faster than the
common assumption of R™ geometrical spreading at short distances. This single result
has significant consequences for current probabilistic ground motion hazard predictions if
the controlling earthquakes are greater than 30 km from the site of interest because the
data indicate a reduced level of motion. There may be a degree of conservatism in the

current hazard maps; however the lack of knowledge in source scaling may introduce
even more conservatism.

We are currently acquiring more data for the Utah-Wyoming region from the IRIS
Data Management Center to focus on two important, but related questions. What is the
geometrical spreading at short distances and are current source scaling laws adequate for
the region. During the summer of 2001, Mr. Young-Soo Jeon will complete a paper on
wave propagation in the region; this paper will be submitted to the Bulletin, Seismologi-
cal Society of America.

References

Atkinson, G. M., and D. M. Boore (1995). Ground-motion relations for eastern North
America, Bull. Seism. Soc. Am. 85,



13-

O T T II T T
2 UTAH fn(Hz)
= Band Pass D(r) for f, 1
O s 2

N
T 5 3 |
I} 4
= — 6
2 — 8
© — 10
© S — 1
L S— e Y __ N E_ e LY YA~ ]
o ° — 14
. —_— 16
©
0
S
- © _
o
n
L2 o
Ow

OI 1 1 1 1 1 1 1 II 1

1 2 3
10 10 10

HYPOCENTRAL DISTANCE (km)

Fig. 6. Residuals of model fit to peak filtered velocity as a function of distance and frequency when using
propagation model A. Differences are in log,, units. Note that at most distances and frequencies, predic-
tions are within a factor of 1.6 90.2 log units) or better.

Atkinson, G. M., and W. Silva (1997). An Empirical study of earthquake source spectra
for California earthquakes, Bull. Seism. Soc. Am., 87 97-113.

Atkinson, G. M., and W. Silva (1997). An empirical study of earthquake source spectra
for California earthquakes, Bull. Seism. Soc. Am. 87, 97-113.

Boore, D. M. (1983). Stochastic simulation of high-frequency ground motions based on
seismological models of the radiated spectra, Bull. Seism. Soc. Am. 73 1865-1894.

Harmsen, S. (1997). Estimating the Diminution of Shear-Wave Amplitude with Distance:
Application to the Los Angeles, California, Urban Area Bull. Seism. Soc. Am. 87
888-903. 17-30.

Savage, M. K., and J. G. Anderson (1995). A local-magnitude scale for the Western
Great Basin - Eastern Sierra Nevada from synthetic Wood-Anderson seismograms,
Bull. Seism. Soc. Am. 85, 1236-1243.

Spudich, P., W. B. Joyner, A. G. Lindh, D. M. Boore, B. M. Margaris and J. B. Fletcher
(1999). SEA99 - A revised ground motion prediction relation for use in exten-
sional tectonic regimes, Bull. Seism. Soc. Am. 89,, 1156-1170.



-14-

O T T T I T T
Y9}
~ 2 UTAH fo (Hz)
= Band Pass D(r) for f, 1
[ TN 2
N 3
© = -
o
) — 4
= — 6
et — 8
© — 10
o
© 8 N —1
o ° / — 12
. — 16
o
v
> S L _
m 1
n
-8 o
0o
Ol 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1
1 2 3
10 10 10

HYPOCENTRAL DISTANCE (km)

Fig. 7. Residuals of model fit to peak filtered velocity as a function of distance and frequency when using
propagation model B. Differences are in log,, units.



-15-

o [ [ [
o
™ Fourier Velocity Spectra
o Mw=4.5
o GRAY - THEO
<.r B BLACK - Data B
Mw=4.0
e
Y4
O j
O o % Mw=3.5
<t 6L E i
— 1
(]
- Q\g\m Mw=3.0
°3
- 0| i
s Mw=2.5
(&
X o
W o
- Mw=2.0
N~ L _
o
o. =
0
0.00 5.00 10.00 15.00 20.00

Freq (HZ)

Fig. 8. Excitation of Fourier velocity spectra at 40 km for Model A. The thick gray curve is the prediction
using a400 bar stress drop. E isthelog,, level of the Fourier velocity spectral amplitude in m.



-16-

o I I I
o
™ Fourier Velocity Spectra
o
o GRAY - THEO
< | _
' BLACK - Data
Mw=4.5
S
Y4
o
O o
N ool i
— 1
©
C
°©3
- 0| _
©
)
(&
X o —
L = Mw=2.5
N~ L _
Mw=2.0
(o}
o. =
(oo}
0.00 5.00 10.00 15.00 20.00

Freq (HZ)

Fig. 9. Excitation of Fourier velocity spectra at 40 km for Model B. The thick gray curve is the prediction
using a400 bar stress drop. E isthelog,, level of the Fourier velocity spectral amplitude in m.



